Anomalies in the vibrational dynamics of proteins are a consequence of fractal-like structure.
نویسندگان
چکیده
Proteins have been shown to exhibit strange/anomalous dynamics displaying non-Debye density of vibrational states, anomalous spread of vibrational energy, large conformational changes, nonexponential decay of correlations, and nonexponential unfolding times. The anomalous behavior may, in principle, stem from various factors affecting the energy landscape under which a protein vibrates. Investigating the origins of such unconventional dynamics, we focus on the structure-dynamics interplay and introduce a stochastic approach to the vibrational dynamics of proteins. We use diffusion, a method sensitive to the structural features of the protein fold and them alone, in order to probe protein structure. Conducting a large-scale study of diffusion on over 500 Protein Data Bank structures we find it to be anomalous, an indication of a fractal-like structure. Taking advantage of known and newly derived relations between vibrational dynamics and diffusion, we demonstrate the equivalence of our findings to the existence of structurally originated anomalies in the vibrational dynamics of proteins. We conclude that these anomalies are a direct result of the fractal-like structure of proteins. The duality between diffusion and vibrational dynamics allows us to make, on a single-molecule level, experimentally testable predictions. The time dependent vibrational mean square displacement of an amino acid is predicted to be subdiffusive. The thermal variance in the instantaneous distance between amino acids is shown to grow as a power law of the equilibrium distance. Mean first passage time analysis is offered as a practical tool that may aid in the identification of amino acid pairs involved in large conformational changes.
منابع مشابه
Transmission properties of one dimensional fractal structures
In this paper, the optical properties of one dimensional fractal structures are investigated. We consider six typical fractal photonic structures: the symmetric dual cantor-like fractal structure, the asymmetric dual cantor-like fractal structure, the single cantor-like fractal structure, the symmetric dual golden-section fractal structure, the asymmetric dual golden-section fractal structure a...
متن کاملDetermination of geochemical anomalies and gold mineralized stages based on litho-geochemical data for Zarshuran Carlin-like gold deposit (NW Iran) utilizing multi-fractal modeling and stepwise factor analysis
The Zarshuran Carlin-like gold deposit is located at the Takab Metallogenic belt in the northern part of the Sanandaj-Sirjan zone, NW Iran. The high-grade ore bodies are mainly hosted by black shale and cream to gray massive limestone along the NNE-trending extensional fault/fracture zones. The aim of this investigation was to determine and separate the gold mineralized stages based on the surf...
متن کاملThe effect of estimation methods on fractal modeling for anomalies’ detection in the Irankuh area, Central Iran
This study aims to recognize effect of Ordinary Kriging (OK) and Inverse Distance Weighted (IDW) estimation methods for separation of geochemical anomalies based on soil samples using Concentration-Area (C-A) fractal model in Irankuh area, central Iran. Variograms and anisotropic ellipsoid were generated for the Pb and Zn distribution. Thresholds values from the C-A log-log plots based on the e...
متن کاملApplication of C-A fractal model and exploratory data analysis (EDA) to delineate geochemical anomalies in the: Takab 1:25,000 geochemical sheet, NW Iran
Abstract Most conventional statistical methods aiming at defining geochemical concentration thresholds for separating anomalies from background have limited effectiveness in areas with complex geological settings and variable lithology. In this paper, median+2MAD as a method of exploratory data analysis (EDA) and concentration-area (C-A) fractal model as two effective approaches in separation g...
متن کاملIdentification of Geochemical Anomalies Using Fractal and LOLIMOT Neuro-Fuzzy modeling in Mial Area, Central Iran
The Urumieh-Dokhtar Magmatic Arc (UDMA) is recognized as an important porphyry, disseminated, vein-type and polymetallic mineralization arc. The aim of this study is to identify and subsequently determine geochemical anomalies for exploration of Pb, Zn and Cu mineralization in Mial district situated in UDMA. Factor analysis, Concentration-Number (C-N) fractal model and Local Linear Model Tree (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 31 شماره
صفحات -
تاریخ انتشار 2010